Directory:

集群目录服务Directory, 代表多个Invoker, 可以看成List<Invoker>,它的值可能是动态变化的比如注册中心推送变更。集群选择调用服务时通过目录服务找到所有服务

StaticDirectory: 静态目录服务, 它的所有Invoker通过构造函数传入, 服务消费方引用服务的时候, 服务对多注册中心的引用,将Invokers集合直接传入 StaticDirectory构造器,再由Cluster伪装成一个InvokerStaticDirectory的list方法直接返回所有invoker集合;

RegistryDirectory: 注册目录服务, 它的Invoker集合是从注册中心获取的, 它实现了NotifyListener接口实现了回调接口notify(List<Url>)

通俗的来说,就是一个缓存和更新缓存的过程

Directory目录服务的更新过程

RegistryProtocol.doRefer方法,也就是消费端在初始化的时候,这里涉及到了RegistryDirectory这个类。然后执行cluster.join(directory)方法。这些代码在上篇博客有分析过。

cluster.join其实就是将Directory中的多个Invoker伪装成一个Invoker, 对上层透明,包含集群的容错机制

private <T> Invoker<T> doRefer(Cluster cluster, Registry registry, Class<T> type, URL url) { 
    RegistryDirectory<T> directory = new RegistryDirectory<T>(type, url);//对多个invoker进行组装 
    directory.setRegistry(registry); //ZookeeperRegistry 
    directory.setProtocol(protocol); //protocol=Protocol$Adaptive 
    //url=consumer://192.168.111.... 
    URL subscribeUrl = new URL(Constants.CONSUMER_PROTOCOL, NetUtils.getLocalHost(), 0, type.getName(), directory.getUrl().getParameters()); 
    //会把consumer://192...  注册到注册中心 
    if (! Constants.ANY_VALUE.equals(url.getServiceInterface()) 
            && url.getParameter(Constants.REGISTER_KEY, true)) { 
        //zkClient.create() 
        registry.register(subscribeUrl.addParameters(Constants.CATEGORY_KEY, Constants.CONSUMERS_CATEGORY, 
                Constants.CHECK_KEY, String.valueOf(false))); 
    } 
    directory.subscribe(subscribeUrl.addParameter(Constants.CATEGORY_KEY,  
            Constants.PROVIDERS_CATEGORY  
            + "," + Constants.CONFIGURATORS_CATEGORY  
            + "," + Constants.ROUTERS_CATEGORY)); 
    //Cluster$Adaptive 
    return cluster.join(directory); 
} 

  directory.subscribe:

订阅节点的变化,

1. zookeeper上指定节点发生变化以后,会通知到RegistryDirectory的notify方法

2. url转化为invoker对象

调用过程中invokers的使用

再调用过程中,AbstractClusterInvoker.invoke方法中:其中list(invocation) 就是获取directory中所缓存的 invoker。调用AbstrctDirectory的list方法,再转由调用RegisteryDirectory的doList,拿到成员变量methodInvokerMap里的值。

public Result invoke(final Invocation invocation) throws RpcException { 
 
    checkWhetherDestroyed(); 
 
    LoadBalance loadbalance; 
     
    List<Invoker<T>> invokers = list(invocation);  
    if (invokers != null && invokers.size() > 0) { 
        loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl() 
                .getMethodParameter(invocation.getMethodName(),Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE)); 
    } else { 
        loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE); 
    } 
    RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation); 
    return doInvoke(invocation, invokers, loadbalance); 
}

负载均衡LoadBalance: 

  LoadBalance负载均衡, 负责从多个 Invokers中选出具体的一个Invoker用于本次调用,调用过程中包含了负载均衡的算法

  在AbstractClusterInvoker.invoke中代码如下,通过名称获得指定的扩展点。RandomLoadBalance:

public Result invoke(final Invocation invocation) throws RpcException { 
 
    checkWhetherDestroyed(); 
 
    LoadBalance loadbalance; 
     
    List<Invoker<T>> invokers = list(invocation); 
    if (invokers != null && invokers.size() > 0) {//默认拓展点是随机算法@SPI(RandomLoadBalance.NAME) 
        loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(invokers.get(0).getUrl() 
                .getMethodParameter(invocation.getMethodName(),Constants.LOADBALANCE_KEY, Constants.DEFAULT_LOADBALANCE)); 
    } else { 
        loadbalance = ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension(Constants.DEFAULT_LOADBALANCE); 
    } 
    RpcUtils.attachInvocationIdIfAsync(getUrl(), invocation); 
    return doInvoke(invocation, invokers, loadbalance); 
}

AbstractClusterInvoker.doselect

  调用LoadBalance.select方法,讲invokers按照指定算法进行负载

private Invoker<T> doselect(LoadBalance loadbalance, Invocation invocation, List<Invoker<T>> invokers, List<Invoker<T>> selected) throws RpcException { 
    if (invokers == null || invokers.size() == 0) 
        return null; 
    if (invokers.size() == 1) 
        return invokers.get(0); 
    // 如果只有两个invoker,退化成轮循 
    if (invokers.size() == 2 && selected != null && selected.size() > 0) { 
        return selected.get(0) == invokers.get(0) ? invokers.get(1) : invokers.get(0); 
    } 
    Invoker<T> invoker = loadbalance.select(invokers, getUrl(), invocation); 
     
    //如果 selected中包含(优先判断) 或者 不可用&&availablecheck=true 则重试. 
    if( (selected != null && selected.contains(invoker)) 
            ||(!invoker.isAvailable() && getUrl()!=null && availablecheck)){ 
        try{ 
            Invoker<T> rinvoker = reselect(loadbalance, invocation, invokers, selected, availablecheck); 
            if(rinvoker != null){ 
                invoker =  rinvoker; 
            }else{ 
                //看下第一次选的位置,如果不是最后,选+1位置. 
                int index = invokers.indexOf(invoker); 
                try{ 
                    //最后在避免碰撞 
                    invoker = index <invokers.size()-1?invokers.get(index+1) :invoker; 
                }catch (Exception e) { 
                    logger.warn(e.getMessage()+" may because invokers list dynamic change, ignore.",e); 
                } 
            } 
        }catch (Throwable t){ 
            logger.error("clustor relselect fail reason is :"+t.getMessage() +" if can not slove ,you can set cluster.availablecheck=false in url",t); 
        } 
    } 
    return invoker; 
} 

  通过调用 AbstrctLoadBalance 的loadbalance.select(invokers, getUrl(), invocation) 转向具体的实现类,这里就是随机算法负载的 doSelect:

protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) { 
    int length = invokers.size(); // 总个数 
    int totalWeight = 0; // 总权重 
    boolean sameWeight = true; // 权重是否都一样 
    for (int i = 0; i < length; i++) { 
        int weight = getWeight(invokers.get(i), invocation); 
        totalWeight += weight; // 累计总权重 
        if (sameWeight && i > 0 
                && weight != getWeight(invokers.get(i - 1), invocation)) { 
            sameWeight = false; // 计算所有权重是否一样 
        } 
    } 
    if (totalWeight > 0 && ! sameWeight) { 
        // 如果权重不相同且权重大于0则按总权重数随机 
        int offset = random.nextInt(totalWeight); 
        // 并确定随机值落在哪个片断上 
        for (int i = 0; i < length; i++) { 
            offset -= getWeight(invokers.get(i), invocation); 
            if (offset < 0) { 
                return invokers.get(i); 
            } 
        } 
    } 
    // 如果权重相同或权重为0则均等随机 
    return invokers.get(random.nextInt(length)); 
} 

 配置权重可以在配置文件中再service中可以配置weight 来确定随机的倾向

Random LoadBalance

  • 随机,按权重设置随机概率。
  • 在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。

RoundRobin LoadBalance

  • 轮循,按公约后的权重设置轮循比率。
  • 存在慢的提供者累积请求问题,比如:第二台机器很慢,但没挂,当请求调到第二台时就卡在那,久而久之,所有请求都卡在调到第二台上。

LeastActive LoadBalance

  • 最少活跃调用数,相同活跃数的随机,活跃数指调用前后计数差。
  • 使慢的提供者收到更少请求,因为越慢的提供者的调用前后计数差会越大。

ConsistentHash LoadBalance

  • 一致性Hash,相同参数的请求总是发到同一提供者。
  • 当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
  • 缺省只对第一个参数Hash,如果要修改,请配置<dubbo:parameter key="hash.arguments" value="0,1" />
  • 缺省用160份虚拟节点,如果要修改,请配置<dubbo:parameter key="hash.nodes" value="320" />

配置方法:

服务端服务级别: 
<dubbo:service interface="..." loadbalance="roundrobin" /> 
服务端方法级别: 
<dubbo:service interface="...">  
    <dubbo:method name="..." loadbalance="roundrobin"/>  
</dubbo:service> 
 
客户端服务级别: 
<dubbo:reference interface="..." loadbalance="roundrobin" />  
客户端方法级别: 
<dubbo:reference interface="...">  
    <dubbo:method name="..." loadbalance="roundrobin"/>  
</dubbo:reference>

评论关闭
IT序号网

微信公众号号:IT虾米 (左侧二维码扫一扫)欢迎添加!

dubbo(2.5.3)源码之服务消费